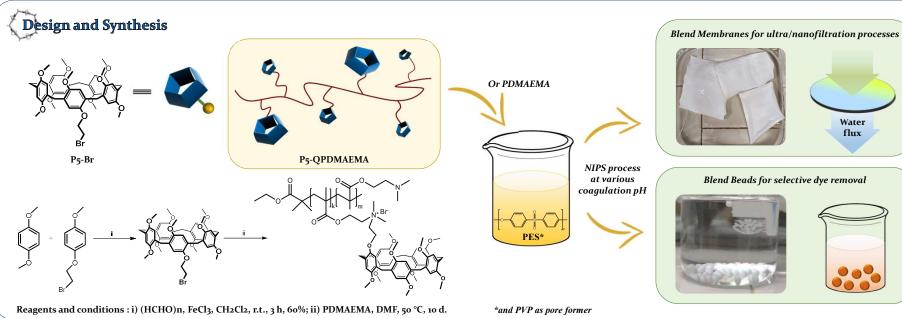


Pillararene-Based PES blended polymers: Design, Preparation and Sustainable Applications

Anna Notti^a, Giulia Rando^a, Maria Rosaria Plutino^b

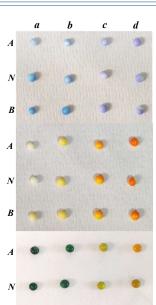
Decamethoxy Pillar[5]arene

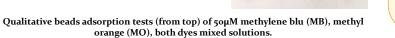


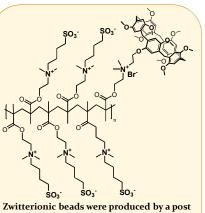
Host-guest properties of pillar[5]arenes.²

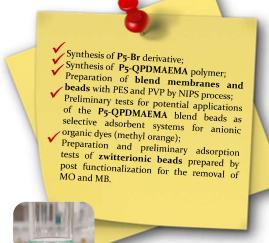
V. Bütün et al., *Polymer* **2001**, *42*, 5993–6008;
T. Ogoshi et al., *J. Am. Chem. Soc.*

2008, 130, 5022-5023.




Results and Conclusions


Name	Polymer Blends
а	PES
b	PES(90%)/PVP(10%)
с	PES(90%)/PVP(5%)/PDMAEMA(5%)
d	PES(90%)/PVP(5%)/ P5-QPDMAEMA(5%)



Zwitterionic beads were produced by a post functionalization of «B-d» beads with 1,4butansultone, CH₃OH, 40 °C, 12h.

Qualitative zwitterionic beads adsorption tests (from left) of 50µM methylene blu, methyl orange, both dyes mixed solutions.

Acknowledgments

All authors wish to thank UniME (ChiBioFarAm Dept.) and PON Ricerca e Innovazione 2014-2020 (RESTART) Project for financial support.

Preliminary release tests in EtOH after

MO+MB adsorption by the zwitterionic