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Introduction CO2 is widely recognized as the main cause of

global warming and climate change. With the aim to reduce CO2

emissions, several strategies have been developed for the capture,
utilization and storage of carbon dioxide (CCUS). This work focuses
on the development of bifunctional catalysts for the conversion of
CO2 into dimethyl ether (DME), a fuel with no collateral emissions
other than CO2 and H2O, a high cetane number and chemical-
physical properties similar to LPG. DME is obtained from the
reaction of CO2 with H2 through two subsequent reactions. The
first one is the CO2 reduction with H2 to obtain methanol; this
reaction is promoted by Cu-based catalysts like Cu/ZnO/Al2O3 and
Cu/ZnO/ZrO2. The second one is the dehydration of methanol to

DME, catalysed by solid acidic catalysts, such as zeolites and γ-
Al2O3 [1]. In this work three different types of mesostructured
acidic catalysts were synthesized: Al-SiO2 (Al-SBA-15, Al-MCM-41),
Zr-TiO2 and γ-Al2O3. These materials were tested for methanol
dehydration and used as supports for the Cu-based redox phase,
to obtain composite materials to be used as bifunctional catalysts.
Mesostructured matrix should limit the growth of redox phase
nanoparticles inside the mesopores, assure a high dispersion due
to the high surface area, leading to a high contact area between
the two phases and, thus, granting in principle superior catalytic
performances. All mesostructured systems were synthesized via
the Sol-Gel method and characterized by XRD, TEM and N2

physisorption. Acidic sites characterization was performed by

calorimetry and FTIR spectroscopy using pyridine as a probe
molecule. The catalysts were eventually physically mixed with a
commercial redox catalyst and tested in a bench-scale plant.
Mesostructured supports were used to disperse the
CuO/ZnO/ZrO2-based redox phase by a wet impregnation method
combined with a self-combustion process. The obtained
bifunctional catalysts were characterized in order to determine
the most promising synthetic conditions in terms of dispersion
and nanosize of the active phase and textural properties of the
corresponding composites.
[1] A. Alvarez, A. Bansode, A.Urakawa et al. Chem. Rev., 2017, 117,
9804-9838.

Functionalization
Evaporation-Induced Self-

Assembly Sol-Gel
Al-SBA-15_ST, Zr-TiO2, γ-Al2O3

Block copolymers and 
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acidic conditions

Stirring
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Aging

Thermal treatment

Solvothermal Sol-Gel
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Stirring 
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into an oven

Washing
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Synthetic route

All methanol dehydration acidic catalysts
were tested in XtL Plant at Sotacarbo SpA
Reactor technical specifications:
• Type: fixed bed reactor
• Working range: up to 700 °C at 10 MPa
• Analysis system: GC online equipped
with TCD and FID detector.

Catalytic tests

Methanol dehydration acidic catalysts
were tested in physical mixture with CZA
(Cu/ZnO/Al2O3-based commercial redox
catalyst).
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Characterization

γ-Al2O3

CuZnZr_γ-Al2O3

Catalytic performance

Conclusions and future perspectives

• EISA and Sol-Gel methods allowed to obtain ordered mesoporous metal
oxides.
• These materials have been characterized to gather information about
mesostructure (LA-XRD, TEM), morphology (TEM), crystallinity (WA-XRD),
textural properties (N2 physisorption) and acidic sites (FTIR, calorimetry).
• Catalytic tests showed steady activity towards methanol dehydration for
all tested mesostructured oxides; the best mesostructured catalyst, in terms
of methanol dehydration, is Al-SBA-15 obtained through EISA.

• All mesostructured oxides have been functionalized with a redox phase
(Cu/ZnO/ZrO2) via a wet impregnation method modified with a self-combustion
process, to obtain bifunctional catalysts.
• The ordered mesoporous structure should allow to obtain a uniform dispersion of
the redox catalyst with a high contact area and between the two phases.
Furthermore, the ideal pore size will limit the growth of redox NPs avoiding
sintering phenomena.
• All bifunctional catalysts well be tested for DME production from CO2 and H2 and
compared with commercial catalysts.

Mesostructured acidic catalyst Mesostructured
bifunctional catalyst

Functionalization

Wet impregnation modified
with a self-combustion

process
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Surf. Area= 
675 m2/g
376 m2/g 

Pore Vol.= 
1.12 cm3/g
0.68 cm3/g 

Surf. Area= 
437 m2/g
260 m2/g 

Pore Vol.= 
0.52 cm3/g
0.33 cm3/g 

Surf. Area= 
172 m2/g
153 m2/g 

Pore Vol.= 
0.55 cm3/g
0.34 cm3/g 

BJH pore Ø 
= 7.0 nm

BJH pore Ø 
= 4.6 nm

BJH pore Ø 
= 9.7 nm
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