

Biomass derived heterogeneous catalysts for the conversion of CO₂ into cyclic carbonates

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

0	САТАЦ	VST 10% \w/\w	0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Recyclabi	
	+ CO2			100	
	3 har	70°C 7h		80	91
SO	U D ai		SC	O 60	
				<u>%</u> 40	
CATALYST	Yield SC (%)	CATALYST	Yield SC (%)	20	
HC- C	85	HC- SD	91	0	1
HC- CA	84	HC- PUCF	86		
HC-S	82	HC-SBPB	84	And the second	
	1	1	1		

C.Samori, C.Torri, D.Fabbri, et al., ChemSusChem 5 (2012) 1501 – 1512 C.Samorì, A.Parodi, E.Tagliavini, P.Galletti, Journal of Analytical and Applied Pyrolysis 155 (2021) 105030

^aDipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126, Bologna (Italy) ^bNational Research Council - Institute for the Study on Nanostructured Materials (CNR-ISMN). Via Piero Gobetti, 101 – 40129 Bologna (Italy) ^cNational Research Council - Institute for the Study on Nanostructured Materials (CNR-ISMN). Via Salaria km 29.300 - 00015 Monterotondo Scalo (Italy) *martina.vagnoni3@unibo.it

> I. Berktas, A. Nejad Ghafar, P. Fontana, et al., Molecules 25 (2020) 886-900 C. Guizani, M. Jeguirim, S. Valin, et al., Energies 10 (2017) 796-813

<u>Martina VAGNONI^a, Adriano PARODI^a, Francesca DE GIORGIO^b, Alessio MEZZI^c, Chiara SAMORÌ^a, Giampiero RUANI^b, Paola GALLETTI^a</u>

thus demonstrating the **bi-functionality of the catalysts**