

UNIVERSIDADE FEDERAL do Rio de Janeiro

Pesquisas Físicas

Microwave-driven hydrothermal synthesis of α -Fe₂O₃ nanorings as CeO₂ catalyst support for CO₂ conversion

Aryane A. Marciniak^{1*}; Evelyn C.S.Santos²; Odivaldo C. Alves³; Flávio Garcia²; Claudio J. A. Mota¹.

¹Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; ²Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brasil; ³Universidade Federal Fluminense, Niterói, Brasil. *ary.marciniak@gmail.com

Introduction

 \checkmark Hematite (α -Fe₂O₃) is abundant in nature and can present several

- morphologies, depending on the preparation method;
- ✓ The conventional hydrothermal procedure is the most used to prepared nanoring-shaped hematite. However, with prolonged reaction time (48 h);
- ✓ Microwave-driven (MW) methods have been used to reduce time and energy in different processes;
- $\checkmark \alpha$ -Fe₂O₃ presents interesting properties for catalysis applications and can be doped or impregnated with CeO_2 .
- \checkmark The conversion of CO₂, a greenhouse gas, to valuable products is an important and sustainable process;
- \checkmark In this work, we show the potential synergistic effect between CeO₂ and α -Fe₂O₃ nanorings (NR) as a green and sustainable catalysts in the CO₂ conversion into DMC.

$$+ 2 CH_3OH = H_3CO OCH_3 + H_2O$$

 \cap

2θ (degree)

Powder XRD patterns: two crystalline phases, hematite (PDF 33-0664) and CeO₂ (JCPDS 34-0394).

SEM: α -Fe₂O₃ presented highly ordered nanorings, mostly with edge lengths between 100 and 110 nm.

TEM image of CeFe-11 shows the presence of α -Fe₂O₃ nanorings well decorated with CeO_2 nanoparticles.

- essential in the synthesis of DMC;
- \succ The CeFe-11 presented the best catalytic activity for CO₂ conversion to DMC.

decreases according to the Ce:Fe molar ratio.

Acknowledgements

Conclusion

- α -Fe₂O₃ nanorings were prepared using a microwave-driven method, which is more sustainable than the conventional method, reducing time and energy;
- The CeFe-11 catalyst presented the best performance (7.2 mmol_{DMC}/ g_{cat}) in converting CO₂ to organic carbonate (DMC). This result may be associated with its high surface area (95 m^2/g) and the presence of oxygen vacancies.