

Soursop has recently attracted scientific interest for its potential anticancer properties. The rich content of bioactive compounds in sourson, such as Armonacin, Kaempferel, Coreximine, Ouercetin, acetogenins, alkaloids, and flavonoids, positions it as a promising candidate for cancer treatment (Mutakin et al., 2022). This study aimed to explore the with cancer-related proteins Human MEX'16 SEA5 Domain (7SA9) and Mouse Double Minute 2 (4ZFI) using a structure-based drug discovery approach.

METHODOLOGY

Molecular Dacking Simulation (Autodack Vina and Biovia Discovery Studio)

In this study, we conducted a molecular dockine analysis to investigate the potential interactions of Annonacin, Kaempferol, Coreximine, Ouercetin, with Human MUC16 SEA5 Domain (7SA9) and Mouse Double Minute 2 (4ZFI) pro-

Quantum Chemical Studies (Caussian #9 suite pro-

Density Functional Theory (DFT) was used in the Ouarnum Chemical Calculations. The ontimization and frequency calculation of were executed employing the B3LYP functional and 6-311*G (d, p) basis set ADMET Studies (SwissADMET and pkCSM) ADMET studies were employed for predictive evaluations of drug-likeness and bioavailability

Ouercetin

Figure 7: Protein-Ligand Interactions between Coreximine and 78A9 protein

Figure 5: Protein-Ligand Interactions

between Kaempferol and 7SA9 protein

Coreximine

Figure 2: Protein-Ligand Interactions between Annonacin and 4ZFI

between Quercetin and 4ZFI protein

Figure 6: Protein-Ligand Interactions between Kaempferol and 4ZFI protein

Figure 8: Protein-Lizand Interactions between Coreximine and 4ZFI protein

Geometry of Kaemoferal

Table 1: Quantum chemical parameters for Coreximine, Annonacin, Kaempferol and Quercetin

Parameter	Coreximine	Quercetin	Annonacin	Kaempferol
Zero Point Energy (kcal/mol)	248.127	148.287	715.387	141.350
Polarizability (A.U)	150.561	150.294	211.242	216.534
Dipole Moment (Debye)	2.871	4.926	2.589	4.974
Enthalpy of Formation (Kcal/mol)	261.813	160.144	745.768	152.519
Free Energy (kcal/mol)	216.780	119.246	653.715	113.448
Entropy (kcal/mol)	0.151	0.137	0.309	0.131

Table 2: HOMO-LUMO Energies of Coreximine, Annonacin, Kaempferol and Ouercetin

Molecule	HOMO Energy(ev)	LUMO Energy(ev)	Energy Difference. (es)	Sec. 1
Coreximine	-3.0923	2.7726	5.8649	- 1 1 1 H
Annonacia	-8.1578	6.5297	14.6875	🔹 номо
Kaempferel	-6.0434	-2.0420	4.0014	و نو نو نو 📢
Quercetin	-3.0434	0.6134	3.6568	• • • •

LUMO Annonacin

LUMO Osercetin HOMO Coreximine 110MO Constimine

HOMO Kaempferol LUMO Kaempferol HOMO Ouercetin Table 3: ADMET Results of Annonacin, Corevinine Kaempferol and Overcetin

Property	Assesso	Cereximin	Kaempferel	Quercetia
Physicochemical				
LogS	-2.067	-1.696	-3.624	-3.671
Medicinal				
Chemistry				
Lipinski Role	Accepted	Accepted	Accepted	Accepted
Pfor Rale	Accepted	Accepted	Accepted	Accepted
PAINS Alerts	0	0		1
Absorption				
HIA				
Distribution				
BBB Penetration				
Metabolism				
CYPLA2 Inhibitor				
CYP2C19 Inhibitor				
CYP2C9 Inhibitor				
CYP2D6 Ishibitor				
CYP5A4 Inhibitor				
Excretion				
CL	-0.345	18.126	6.568	8.284
T1/2	0.087	0.843	0.995	0.929
Texidity				
ALTER TARIAIN				

Sustainable Green Chemistry Approach to Structure-Based Drug Discovery of Soursop (Annona

Muricata) Bioactive Compounds: Anticancer Efficacy through Quantum Chemical Calculations, Molecular Docking, and ADMET Studies with 7SA9 and 4ZEI Proteins

H. S. Samuel1*: J. Dennis 1: D. Alabira2: B. Bako1. A. M. Abakoa1 : E.E. Etim 1. and J. P. Shinogu1. 3

1Department of Chemical Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria.

2Department of Food Science and Technology, Federal University Wukari, Wukari, Taraba State, Nigeria,

3Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 United States

CONCLUSION

Ouercetin emerged as the strongest binder to target proteins (7SA9 and 4ZFI), forming multiple hydrogen bonds (e.g., with ARG97: 1.99 Å), n-stacking, and metal chelation. Kaempferol showed balanced interactions but weaker affinity than opercetin, while annonacin relied on hydrophobic contacts and coreximine exhibited the weakest binding. Future research should focus on expan sion of the compound screening to include additional Annona muricata constituents, experimental validation of the predicted activities through cell-based and animal studies, and development of optimized formulations to enhance bioavailability and target specificity.

REFERENCE

Mutakin, M., Fauziati, R., Fadhilah, F. N., Zuhrotun, A., Amalia, R., & Hadisaputri, Y. E. (2022), Pharmacological activities of soursop (Annona muricata Lin.). Molecules, 27(4), 1201.

Figure 4: Protein-Ligand Interactions